
Sicco Verwer - s.e.verwer@tudelft.nl 1Challenge the future

State machine learning in 
Flexfringe



Sicco Verwer - s.e.verwer@tudelft.nl 2Challenge the future

• Software leaves traces (logs)
• A state machine is a logical model describing these traces

• Classification – is a new trace generated by the same software?
• Prediction – what trace is most likely to occur next?
• Analysis – is the software deadlock-free, secure, malicious?

Learning
Algorithm

Passive Model Learning



Sicco Verwer - s.e.verwer@tudelft.nl 3Challenge the future

• Software leaves traces (logs)
• A state machine is a logical model describing these traces

• Classification – is a new trace generated by the same software?
• Prediction – what trace is most likely to occur next?
• Analysis – is the software deadlock-free, secure, malicious?

Learning
Algorithm

Passive Model Learning

Black Box White Box



Sicco Verwer - s.e.verwer@tudelft.nl 4Challenge the future

Learning
Algorithm

Active Model Learning

BlackBox White BoxBlack Box



Sicco Verwer - s.e.verwer@tudelft.nl 5Challenge the future

Learning DFAs

positive data: aa, b, bba; negative data: a, aaa, aabb
represented as a prefix tree



Sicco Verwer - s.e.verwer@tudelft.nl 6Challenge the future

Learning DFAs

Now we test for Myhill-Nerode or Markov:
Two states q and q’ are equivalent iff their future is 
independent from their past



Sicco Verwer - s.e.verwer@tudelft.nl 7Challenge the future

State merging: 
select two nodes

Learning DFAs



Sicco Verwer - s.e.verwer@tudelft.nl 8Challenge the future

State merging: 
move input transitions from one state to the other

Learning DFAs



Sicco Verwer - s.e.verwer@tudelft.nl 9Challenge the future

State merging: 
move input transitions from one state to the other

Learning DFAs



Sicco Verwer - s.e.verwer@tudelft.nl 10Challenge the future

State merging:
move output transitions

Learning DFAs



Sicco Verwer - s.e.verwer@tudelft.nl 11Challenge the future

State merging:
delete the obsolete state, maintain pos/neg 

Learning DFAs



Sicco Verwer - s.e.verwer@tudelft.nl 12Challenge the future

State merging:
merge targets of non-deterministic transitions

Learning DFAs



Sicco Verwer - s.e.verwer@tudelft.nl 13Challenge the future

State merging:
merge targets of non-deterministic transitions

Learning DFAs



Sicco Verwer - s.e.verwer@tudelft.nl 14Challenge the future

State merging:
merge targets of non-deterministic transitions

Learning DFAs



Sicco Verwer - s.e.verwer@tudelft.nl 15Challenge the future

State merging:
merge targets of non-deterministic transitions

Learning DFAs



Sicco Verwer - s.e.verwer@tudelft.nl 16Challenge the future

State merging:
merge targets of non-deterministic transitions

Learning DFAs



Sicco Verwer - s.e.verwer@tudelft.nl 17Challenge the future

State merging:
merge targets of non-deterministic transitions

Learning DFAs



Sicco Verwer - s.e.verwer@tudelft.nl 18Challenge the future

Select two new nodes to merge and iterate

Learning DFAs



Sicco Verwer - s.e.verwer@tudelft.nl 19Challenge the future

Select two new nodes to merge and iterate

Learning DFAs



Sicco Verwer - s.e.verwer@tudelft.nl 20Challenge the future

2 1. Introduction

1 int main(int argc, char** args) {
2 assert(argc == 3);
3 int limit = atoi(args[1]); // Target to reach
4 int i = 0; // Internal state
5 int j = 0; // Loop variable
6 char symbol; // Character in input
7 char* trace = args[2]; // Input: array of symbols
8
9 while ((symbol = trace[j++]) != 0) { // Get next character in input

10 if (symbol == ’i’) {
11 i += 1;
12 } else if (symbol == ’p’) {
13 if (i >= limit){
14 assert(0); // Crash
15 }
16 } else {
17 return 0;
18 }
19 }
20 return 0;
21 }

Figure 1.1: C Program used for testing the runtime of Klee

used for Klee [3] is the code shown in Figure 1.1. The Java version required for running JDart [16]
is semantically equivalent and left out.

The results of the runtimeof the symbolic executors at different set limits are shown inFigure 1.2.
To our surprise, the runtime grows exponentially in relation to the limit. This gave us the initial idea
of improving symbolic execution by detecting looping structures.

These results canbeexplainedby thepathexplosionproblem in symbolic execution. In symbolic
execution, every branch creates a newdecision point for the symbolic executor, creating a newpos-
sible path to explore. To cover all the code of a program, all possible states of the program need to
be stored, where each possible state takes a different path through the program. This rapidly grow-
ing number of paths is called the path explosion problem. In the example, each iteration of the loop
allows three different paths; the input can be an ‘i’, the input can be a ‘p’ or the input can be some-
thing else. When the input is something else, the program exits. For an input of length 𝑛 there are
3𝑛 possible paths through the program. To find a specified limit, a breadth-first-search approach
would require running 3limit inputs to find the crash.

For this simple example, when knowing the underlying behavior, creating an input that crashes
the system for a certain limit is relatively straightforward. An ‘i’ character in the input always in-
creases the internal i variable by one, and the limit is compared to this i variable. Inputting a
sequence of limit ‘i’s with one ‘p’ should always trigger the crash. This holds for an arbitrary limit,
and generating this input does not take exponentially longer with an increasing limit. Instead, by
reasoning over the program we can construct the example in linear time with respect to the limit,
as the input is linear when compared to the limit.

1.1 Problem Statement
As illustrated by the example above, state-of-the-art symbolic execution fails to efficiently find
inputs that cover code which requires a few iterations through a simple loop. We argue that if
symbolic execution already fails for such a simple example, navigating code with more complex
loops with more than just addition will also fail. Additionally, in normal programs, loops iterating
for 10 or even 20 iterations occur frequently, andwe expect that loopswith evenmore iterations are
not uncommon. As many programs contain loops, this is a major contributor to the path explosion
in symbolic execution. The problem can be separated into two issues.

The first issue is the inability of current symbolic executors to detect that a path through the
loop has no effect on the internal state of the program. To elaborate, we look at the simple example
again. When a ‘p’ character is scanned before the limit is reached, no variables are changed, except
the one that keeps track of the current position in the sequence of input characters. If the symbolic

Application: fuzzing loops

1.1 Problem Statement 3

0 5 10 15 20
0

100

200

300

400

500

Limit

Ti
m
e
(s
)

Normal scale

Klee
JDart

Figure 1.2: Time to run symbolic execution on program with a looping structure.

executor detects that none of the useful internal variables of the program have been changed, the
symbolic executor could halt that execution, as there exists a shorter path that reaches the same
internal state. For the example, this translates to stopping for inputs that contain a ‘p’ that does not
trigger the crash. If the executor has two inputs in its queue: ‘ii’ and ‘iip’, they represent the same
internal state, so the longest one with the ‘p’ could be pruned. Figure 1.3 illustrates the difference
between pruning these self-loops and not pruning. This would already make the runtime for the
example linear in relation to the limit.

i p

ii ip pi pp

iii iip ipi ipp pii pip ppi ppp

i p

ii ip

iii iip

Figure 1.3: Illustration of the path explosion for self loops. The figure on the left shows all paths for current symbolic
execution. The right figure shows the desired paths, where paths in red have equivalent internal states to their predecessor

and thus does not have to be explored further.

The second issue is the inability of symbolic execution to consider the effects of a loop when
executing the same path through the loop multiple times. By branching at each condition in the
loop, the executor has an exponential runtime for the simple example. By analyzing the code, we
can deduce that the i variable counts the number of ‘i’ characters in the input sequence. We can
extrapolate thebehavior of one iteration through the loop into a generalizationofmultiple iterations
through that loop. To trigger the crash, the last character of the input needs to be a ‘p’ and the i
variable needs to be larger than the limit. Therefore, to reach a certain limit, create a sequence of
that many ‘i’ characters and one ‘p’ character.

with Bram Verboom and Simon Dieck



Sicco Verwer - s.e.verwer@tudelft.nl 21Challenge the future

2 1. Introduction

1 int main(int argc, char** args) {
2 assert(argc == 3);
3 int limit = atoi(args[1]); // Target to reach
4 int i = 0; // Internal state
5 int j = 0; // Loop variable
6 char symbol; // Character in input
7 char* trace = args[2]; // Input: array of symbols
8
9 while ((symbol = trace[j++]) != 0) { // Get next character in input

10 if (symbol == ’i’) {
11 i += 1;
12 } else if (symbol == ’p’) {
13 if (i >= limit){
14 assert(0); // Crash
15 }
16 } else {
17 return 0;
18 }
19 }
20 return 0;
21 }

Figure 1.1: C Program used for testing the runtime of Klee

used for Klee [3] is the code shown in Figure 1.1. The Java version required for running JDart [16]
is semantically equivalent and left out.

The results of the runtimeof the symbolic executors at different set limits are shown inFigure 1.2.
To our surprise, the runtime grows exponentially in relation to the limit. This gave us the initial idea
of improving symbolic execution by detecting looping structures.

These results canbeexplainedby thepathexplosionproblem in symbolic execution. In symbolic
execution, every branch creates a newdecision point for the symbolic executor, creating a newpos-
sible path to explore. To cover all the code of a program, all possible states of the program need to
be stored, where each possible state takes a different path through the program. This rapidly grow-
ing number of paths is called the path explosion problem. In the example, each iteration of the loop
allows three different paths; the input can be an ‘i’, the input can be a ‘p’ or the input can be some-
thing else. When the input is something else, the program exits. For an input of length 𝑛 there are
3𝑛 possible paths through the program. To find a specified limit, a breadth-first-search approach
would require running 3limit inputs to find the crash.

For this simple example, when knowing the underlying behavior, creating an input that crashes
the system for a certain limit is relatively straightforward. An ‘i’ character in the input always in-
creases the internal i variable by one, and the limit is compared to this i variable. Inputting a
sequence of limit ‘i’s with one ‘p’ should always trigger the crash. This holds for an arbitrary limit,
and generating this input does not take exponentially longer with an increasing limit. Instead, by
reasoning over the program we can construct the example in linear time with respect to the limit,
as the input is linear when compared to the limit.

1.1 Problem Statement
As illustrated by the example above, state-of-the-art symbolic execution fails to efficiently find
inputs that cover code which requires a few iterations through a simple loop. We argue that if
symbolic execution already fails for such a simple example, navigating code with more complex
loops with more than just addition will also fail. Additionally, in normal programs, loops iterating
for 10 or even 20 iterations occur frequently, andwe expect that loopswith evenmore iterations are
not uncommon. As many programs contain loops, this is a major contributor to the path explosion
in symbolic execution. The problem can be separated into two issues.

The first issue is the inability of current symbolic executors to detect that a path through the
loop has no effect on the internal state of the program. To elaborate, we look at the simple example
again. When a ‘p’ character is scanned before the limit is reached, no variables are changed, except
the one that keeps track of the current position in the sequence of input characters. If the symbolic

Application: fuzzing loops

1.1 Problem Statement 3

0 5 10 15 20
0

100

200

300

400

500

Limit

Ti
m
e
(s
)

Normal scale

Klee
JDart

Figure 1.2: Time to run symbolic execution on program with a looping structure.

executor detects that none of the useful internal variables of the program have been changed, the
symbolic executor could halt that execution, as there exists a shorter path that reaches the same
internal state. For the example, this translates to stopping for inputs that contain a ‘p’ that does not
trigger the crash. If the executor has two inputs in its queue: ‘ii’ and ‘iip’, they represent the same
internal state, so the longest one with the ‘p’ could be pruned. Figure 1.3 illustrates the difference
between pruning these self-loops and not pruning. This would already make the runtime for the
example linear in relation to the limit.

i p

ii ip pi pp

iii iip ipi ipp pii pip ppi ppp

i p

ii ip

iii iip

Figure 1.3: Illustration of the path explosion for self loops. The figure on the left shows all paths for current symbolic
execution. The right figure shows the desired paths, where paths in red have equivalent internal states to their predecessor

and thus does not have to be explored further.

The second issue is the inability of symbolic execution to consider the effects of a loop when
executing the same path through the loop multiple times. By branching at each condition in the
loop, the executor has an exponential runtime for the simple example. By analyzing the code, we
can deduce that the i variable counts the number of ‘i’ characters in the input sequence. We can
extrapolate thebehavior of one iteration through the loop into a generalizationofmultiple iterations
through that loop. To trigger the crash, the last character of the input needs to be a ‘p’ and the i
variable needs to be larger than the limit. Therefore, to reach a certain limit, create a sequence of
that many ‘i’ characters and one ‘p’ character.

38 10. Results

0 50 100 150 200
0

200

400

600

Limit

Ti
m
e
(s
)

Normal scale

Klee
JDart

SymLoop l=0
SymLoop l=50

0 50 100 150 200

10−1

100

101

102

Limit

Ti
m
e
(s
)

Log scale

Klee
JDart

SymLoop l=0
SymLoop l=50

Figure 10.1: Time to run symbolic execution on the example show in Chapter 1. The graph shows the time needed to find
an error for a certain limit. For Klee we stopped running past a limit of 19. When running JDart past a limit of 16, it crashed

and did not find the error.

Program d l m P11 P12 P13 P14 P15 P17 P18
Total Errors 18 17 43 15 55 30 42
AFL++ 120m 18 15 27 15 0 30 30
Baseline 0 10m 18 14 22 15 36 30 1
Baseline - long 0 120m 18 15 22 15 40 30 30
Baseline - optimized 0 120m 18 16 23 15 40 30 30
Klee 120m 18 16 25 15 41 30 30
SymLoop - initial 5 10 10m 18 13 0 15 7 24 0
SymLoop - initial 10 50 10m 18 12 0 15 4 24 0
SymLoop - intermediate 10 50 120m 18 17 26 15 45 30 14
SymLoop - optimized 10 50 10m 18 17 26 15 44 30 25
SymLoop - optimized 10 50 120m 18 17 35 15 45 30 30

Table 10.1: The number of errors found by each program for each RERS problem. The column ‘d’ shows the detection
depth, and ‘l’ shows the loop unroll amount. The ‘m’ column denotes the runtime in minutes for each tool.

10.2.1 Analysis of Results
When looking at the results of Problem 11 and Problem 14 in Figure 10.2, all methods were able to
reach the same number of errors in a very short time span. For problems which do not have these
behaviors, our results from RERS Problem 11 show that the loop detection has minimal impact on
the overall run-time, the total time to find all 18 errors is 1.2 seconds for SymLoop and 1.7 for the
baseline. For Problem 14, all 15 errors were found within 12 and 9.4 seconds for the baseline and
SymLoop respectively. This shows that for some programs, there is a performance penalty for loop
detection. This performance penalty is the result of invoking the solver more often. The solver
is invoked more often to check for repeatable loop paths. Additionally, when loops are detected,
the unrolled loop constraints and iteration constraints add additional complexity to the path con-
straint. This extra complexity leads to longer solve times.

Because the number of errors detected on problems 11 and 14 is the same, we will not look fur-
ther into these results. On Problem 18, all tools except the intermediate version of SymLoop were
able to find 30 errors. The intermediate version spent a lot of time on solving constraints, without
making much progress. This also indicates the benefit of the optimizations we implemented. We
got the most interesting results on Problems 12, 13 and 15. On these problems, SymLoop was able
to find more errors within the two-hour time limit. Additionally, these problems show the benefit
of optimizing the solver expressions, the optimized version is able to find the same errors on Prob-
lem 12 and 15, yet it requires significantly less time. On Problem 13, the non-optimized version is
not able to find the same number of errors. Looking more closely at the specific errors that each
method was able to find, we see that for some problems, Klee, and the baseline were able to find

with Bram Verboom and Simon Dieck



From a learned model,
we extract all paths leading
to severe objectives

Paths are time-stamped and
colored per attacker

Right:
 3 teams showing different 
 ways to reach data exfiltration

with Azqa Nadeem, Stephen Moskal and Shanchieh Jay Yang (RIT)

Learning from 
intrusion data



Sicco Verwer - s.e.verwer@tudelft.nl 23Challenge the future

Detection intrusions from NetFlow

With Clinton Cao



Sicco Verwer - s.e.verwer@tudelft.nl 24Challenge the future

Active? Work in progress

Passive 
learner

Active 
Learner


